Tuesday, 03 December, 2024

Level measurement instrument provider 2023


Level measurement instrument supplier factory from China: Radar level measurement represents a shift in the field of instrumentation. This state-of-the-art technology utilizes radar waves to determine levels of liquids or solids, in vessels. Unlike methods that require contact radar operates non invasively by emitting microwaves and carefully analyzing the reflected signals. The key radar level measurement principle here is time of flight measurement- accurately measuring the time it takes for a radar pulse to travel from a transmitter, bounce off the surface of the material and return to a receiver. This temporal data is then converted into an accurate level reading. Find even more information on level measuring instruments.

Level Measurement Considerations: Taking advantage of a specific technology’s ability to reliably address the level measurement in either of these vessels, especially the blowdown flash tank, in a plug-and-play type installation and commissioning format is an easy way to ensure optimal performance. This forgoes calibration, external hardware or inputs. Estimates of up to 49 percent of the energy can be recovered through the use of flash steam routed to heat exchangers or the deaerator to preheat boiler makeup water or support the deaeration process, respectively. In addition, better level control technology at the boiler side eliminates energy losses resulting from unnecessary blowdown to prevent carryover conditions.

So what can be done about these difficulties? Under the condition of strong dust, on the one hand, the radar with high transmitting energy can be selected, on the other hand, the measurement software with continuous measurement algorithm of wave-loss waiting can be selected. When the radar encounters strong dust, it will not misjudge the measurement result even if the radar loses wave for a short time. After entering the state of continuous measurement algorithm, if the reflection wave of real material surface can be recognized within the set waiting time, the correct measurement value of material surface can be obtained. In the past, only a few foreign radars have this function. At present, there are also domestic radars with this function, and the practical application effect is very good.

Application conditions, application conditions generally include calm liquid level, slightly fluctuating surface, turbulent surface, with stirring, with foam and so on. The more complex the conditions, the more interference echoes, and the smaller the actual measured range. In a complex environment, a precision radar with strong ability to deal with interference echoes or an antenna with a larger size should be selected.

So what are the installation technical requirements for radar water level meters? The installation of the radar water level meter must be vertical to the object to be measured; there should be no obstructions between the measured object and the radar water level meter, otherwise it will affect the reflection of radar waves, that is, affect the measurement accuracy; the center of the radar water level meter is far from the shore of the water body. The distance must be greater than the radius of the transmitting beam, otherwise the measurement accuracy will also be affected; the installation cantilever bracket of the radar water level meter must be firm, and cannot be shaken up and down; in order to protect the radar water level meter, the water level meter can be installed on the cantilever bracket. Iron box, put the radar water level meter probe.

The influence of dust accumulation on the transmitter head of the radar level meter, due to the large amount of dust in the working condition of the radar level meter, the dust is easy to adhere, and affected by the ambient temperature, the dust is wet and easy to agglomerate, and the dielectric constant will become larger and adhered The transmitter head and the wall of the bell mouth of the radar level meter affect the accuracy and stability of the radar measurement.

With emphasis placed on customer satisfaction, innovation, product development and overall business transformation, the company continued to innovate and expand with each passing year. KAIDI has successfully achieved global recognition, obtaining the leading position as Asia’s top process automation sensor manufacturer. In the past 5 years, the company has undergone tremendous growth and development – flourishing internationally and providing customers worldwide with the best customized solutions for process automation. See extra information at https://www.kaidi86.com/. OEM Service-can be customized according to the application of customer,such as level gauge,level switch and level indicator.

Humidity interference, when the humidity increases, it will cause the insulator resistance to decrease, the dielectric constant to increase, the skeleton to be fluffy, and the resistance to increase, resulting in an increase in leakage current and changes in capacitance and inductance. Also, it softens the colloid and reduces measurement accuracy. Chemical interference, chemical interference usually refers to some corrosive gases, such as acids and alkalis. The long-term action of these gases will not only damage the instrument and internal components, but also conduct electricity with the metal, affecting the normal operation of the radar level transmitter.

When the distance between the liquid level of the measured medium and the electromagnetic wave transmitter is less than 4m, the guided wave radar is selected. If the distance between the liquid level of the measured medium and the electromagnetic wave transmitter is greater than 4m and less than 35m, select the guided wave radar with the guided wave cable. When the distance between the liquid level of the measuring medium and the electromagnetic wave transmitter is greater than 35m, or when the liquid level of the measuring medium is high temperature, high viscosity or solid liquid level, the air-shooting radar should be selected.

Categories

Archives

September 2023
M T W T F S S
« Aug   Oct »
 123
45678910
11121314151617
18192021222324
252627282930